

System Design Guide: Skid-Mounted Tempering Systems

G4130 Tempering System, Recirculating, Single Water Tank with Booster Pump

System Specifications

Design Flow Rate:	3-23 GPM
Boost Pressure:	10-70 psi
Water Heater Tank:	119 gallon tank with 9 kW heater set to 160°F (71°C)
System Recovery Time:	3.5 hours with incoming water temperature of 50°F (10°C)
Design Recirculation Flow Rate:	8-10 GPM
Recirculation Heater:	In-line heater (1.5 kW-9 kW) with high temperature shutoff
Recirculation Water Purifier:	In-line ultraviolet light to kill bacteria
Voltage:	Single point fused connection, 480 VAC, 3Ø, 60 Hz
Amp Draw:	18-30 FLA
Skid Dimension:	48" W x 60" L x 80" H

System Requirements

Incoming Water Pressure:	30-95 psi dynamic
Incoming Water Temperature:	Minimum 50°F (10°C) required to produce 85°F (29°C) flush for 15 minutes at 23 GPM flow rate
Incoming Water Pipe Size:	Must be sized to support appropriate flow
System Location:	Must be located in an indoor, non- hazardous environment at a temperature above 45°F (7°C)

System Variables

Minimum 30 psi dynamic pressure is required at the furthest/highest safety station. To meet minimum pressure requirement, the following system pressure losses must be calculated and taken into account:

Pressure Losses Must Be Calculated Due To:

- >> Elevation. Calculated by the vertical distance from incoming water pipe on tempering skid to highest shower head outlet (2.31 ft = -1 psi).
- Friction. Calculation is dependent on pipe size, material, length, and number of turns in the supply line.
- >> Tempering Skid. 23 GPM system flow rate results in 11 psi loss.

Keys to Appropriate Loop Sizing

Effective loop sizing must take into account the following:

- Supply piping must be selected based on friction loss at the highest flow rate.
- > Vertical rise of supply piping should be kept to a minimum to reduce the pressure loss due to elevation.
- » Number of turns in the loop should be minimized.
- >> Return pipe size should be selected based on friction loss at a recirculating flow rate of 10 GPM.
- > Loop should be insulated to reduce heat loss through piping.

Insufficient Water Pressure

A booster pump is required in situations where there is insufficient incoming water pressure to adequately supply the loop. The in-line booster pump will increase water pressure to psi required for proper emergency equipment operation. Booster pump motor sizes range from 1/2 HP – 5 HP and operate via ON/OFF pressure switch or Variable Frequency Drive. Note: A Variable Frequency Drive is required when the incoming water pressure range varies by more than 20 psi.